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Abstract

The free vibration of an arbitrarily thick orthotropic piezoelectric hollow cylinder with a functionally graded
property along the thickness direction and filled with a non-viscous compressible fluid medium is investigated. The
analysis is directly based on the three-dimensional exact equations of piezoelasticity using the so-called state space
formulations. The original functionally graded shell is approximated by a laminate model, of which the solution will
gradually approach the exact one when the number of layers increases. The effect of internal fluid can be taken into
consideration by imposing a relation between the fluid pressure and the radial displacement at the interface. Analytical
frequency equations are derived for different electrical boundary conditions at two cylindrical surfaces. As particular
cases, free vibration of multi-layered piezoelectric hollow cylinder and wave propagation in infinite homogeneous
cylinder are studied. Numerical comparison with available results is made and dispersion curves predicted from the
present three-dimensional analysis are given. Numerical examples are further performed to investigate the effects of
various parameters on the natural frequencies.
© 2003 Elsevier Ltd. All rights reserved.

Keywords: Free vibration; Functionally graded piezoelectric material; State equation; Approximate laminate model; Hollow cylinder;
Fluid-structure interaction

1. Introduction

Since the piezoelectric phenomenon was first discovered by Pierre and Paul-Jacques Curie in 1880,
piezoelectric materials have attracted many attentions in both theoretical and engineering science and lots
of efforts have been made on the quality and variety of artificial piezoelectric materials, which have been
widely used to manufacture various sensors, conductors, actuators, etc. (Moulson and Herbert, 1990;
Morita et al., 1995; Uchino, 1996). In fact, piezoelectric materials have become one of the most widely used
smart or intelligent materials nowadays (Tzou and Anderson, 1992; Galassi et al., 2000). Experimental
evidence has also indicated that bones could be modeled as a piezoelectric cylindrical shell, which is in fact
inhomogeneous (Saha and Williams, 1996).
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In recent years, the concept of functionally graded materials (FGMs) has been further extended into
piezoelectric materials to improve the lifetime and reliability of advanced piezoelectric structures (Zhu et al.,
1995; Wu et al., 1996; Sakamura et al., 2000; Yamada et al., 2001; Ballato et al., 2001; Takahashi et al.,
2002). Smart structures or elements made of these so-called functionally graded piezoelectric materials
(FGPMs) are usually superior to the conventional laminated piezoelectric ones (such as the bimorphs)
because no discernible internal seams or boundaries exist and no internal stress peaks are caused when
voltage is applied and thus failure from interfacial debonding or from stress concentration can be avoided
(Wu et al., 1996; Li and Weng, 2002). Moreover, the performance of conventional homogeneous piezo-
electric structures can be improved by using the concept of FGM. For example, Takagi et al. (2002) applied
the modified classical lamination theory and the finite element method to optimize compositional profile of
functionally graded PZT/Pt piezoelectric bimorph actuator that will give a larger deflection and smaller
stress. To design advanced smart structures, it is necessary to thoroughly understand the static and dynamic
behaviors of FGPM structures in complex environments. The focus of this paper is to study the dynamic
behavior of fluid-filled FGPM cylindrical shells. The conventional homogeneous or laminated piezoelectric
cylindrical shells coupled with fluids are encountered in various applications like fluid control valve, ink jet
printer, and submarine ultrasonic transducers (Bugdayci et al., 1983; Grosh et al., 1998).

In this paper, the coupled vibration of an inhomogeneous orthotropic piezoelectric hollow cylinder filled
with internal compressible fluid is studied directly based on the three-dimensional equations of piezo-
elasticity. The cylinder is assumed to have a functionally graded property along the thickness direction
(radial direction) and is polarized in the axial direction. The state-space method is employed, which has the
particular superiority to study laminated plates and shells (Fan, 1996; Chen and Ding, 2001). We further
employ a laminate model (Fan and Zhang, 1992; Liu and Tani, 1991; Tanigawa, 1995; Chen and Ding,
2000) to approximate the FGPM hollow cylinder. It is obvious that the larger the number of layers involved
is, the accurate the model will be. By employing the continuity conditions of state variables between ad-
jacent layers, recurrence formulas are established. The frequency equation is then deduced for a simply
supported FGPM hollow cylinder filled with a compressible, non-viscous fluid medium with different
electrical boundary conditions imposed on the two cylindrical surfaces. The one for an infinite homo-
geneous piezoelectric hollow cylinder is considered as a particular case and numerical comparison is made
with available results. The effects of some related parameters on natural frequencies are also discussed.
The present method allows us to consider arbitrary variations of material properties along the thickness
direction. The 3D solution obtained here can provide a useful means of comparison in the development of
simplified shell theories of non-homogeneous FGPM cylindrical shells coupled with surrounding media.

2. Brief literature survey

Generally, the elastic deformation and electric field of piezoelectric materials are coupled, which makes
the governing equations very complex. The classical theories for plates and shells are not so suitable here
because the electric potential through the thickness is no longer linear so that higher-order representations
should be adopted (Rogacheva, 1994). Especially, these theories usually become inaccurate and even invalid
when the plate or shell becomes thicker, just as in the elastic case. Thus, in the most recent decade, much
investigation on piezoelectric cylindrical shells was to obtain 3D solutions (Ding et al., 1997a; Kapuria et al.,
1997; Chen and Shen, 1998). Xu and Noor (1996) analyzed the thermal piezoelastic response of a layered
piezoelectric material (LPM) cylindrical shell employing the transfer matrix method. Xu et al. (1997)
further studied the free vibrations of a thermal LPM cylindrical shell with initial stresses. Zhou et al. (1999)
established a state equation with constant coefficients by introducing a small parameter and considered the
static response of an LPM cylindrical shell. The polarized direction of piezoelectric cylindrical shell in the
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above-mentioned studies is considered to be along the radial direction. Wang (2001) investigated the one
polarized in the axial direction, but using the membrane shell theory.

Coupled vibrations of fluid-filled cylindrical shells were first considered by Junger and Mass (1952),
which was followed by Jain (1974), who discussed the free vibrations of orthotropic cylindrical shells filled
partially or completely with an incompressible, non-viscous fluid using a shear shell theory. Recently, based
on Love’s shell theory, Zhang et al. (2001) expressed the displacements of the shell as the form of wave
propagation to analyze the coupled vibrations of fluid-filled cylindrical shell. There are also several three-
dimensional analyses of fluid-filled cylindrical shells. Chen et al. (1997) used the Frobenius power series
method to investigate the free vibrations of fluid-filled orthotropic cylindrical shells. Chen and Ding (1999)
employed a displacement separation formula to simplify the basic equations of a transversely isotropic
medium and considered the vibration of a fluid-filled transversely isotropic cylindrical shell. The coupled
analysis of piezoelectric cylindrical shells has also attracted particular interests, since it is essential for their
frequent encounters in some engineering applications (Babaev and Savin, 1988; Babaev et al., 1990; Shulga
and Melnik, 1996; Ding et al., 1997a). The 3D coupled free vibration of a fluid-filled piezoelectric hollow
sphere was considered by Chen et al. (2001) employing the Frobenius power series method.

The concept of FGM was first introduced by a group of Japanese scientists to address the needs of
aggressive environment of thermal shock (Yamanouchi et al., 1990). Since then, FGMs have received more
and more attention. On the macroscopic scale, FGMs are anisotropic, inhomogeneous and possess spatially
continuous mechanical properties. Heretofore, a lot of works on the FGM cylindrical shells have been
carried out. For example, employing Love’s shell theory and Rayleigh-Ritz method, Loy et al. (1999)
obtained the natural frequencies of a simply supported FGM cylindrical shell. Applying the same method
but a modified expression of spatial displacement fields, Pradhan et al. (2000) further studied the vibration
characteristics of the FGM cylindrical shell under various boundary conditions. Tarn (2001) obtained some
exact thermoelastic solutions of an anisotropic cylinder with a particular functionally graded property. Han
et al. (2001) presented a hybrid numerical method to investigate transient waves in a cylinder made of
FGM; the cylinder was divided into some cylindrical elements that the material properties were approxi-
mated with piecewise linear functions. It is noted here that as in the early of 1990s, Liu and Tani have
investigated the wave propagation in FGPM plates of which the material properties are approximated by
piecewise linear functions (Liu and Tani, 1991, 1992). Chen and Ding (2000, 2002) employed the state-space
approach to analyze the bending and free vibration problems of FGPM plates using a laminate model, for
which material properties were treated as piecewise constants. Recently, Wu et al. (2002) introduced a high-
order shell theory and examined the electromechanical behavior of graded piezoelectric shells. Wu et al.
(2004) obtained an exact solution for a piezothermoelastic cylindrical shell with radial inhomogeneity
acting as a smart device subjected to thermal and mechanical loadings.

3. State equation

In cylindrical coordinates (r, ¢,z), Fig. 1, the basic equations of orthotropic piezoelectric materials
polarized in the axial direction are (Ding and Chen, 2001)

Generalized geometric equations:
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Fig. 1. Cylindrical coordinates and stresses.

Generalized constitutive relations:
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where @, E, and D, ({ = r, ¢, z) are the electric potential, electric intensity and electric displacements, re-
spectively, f; (¢ = r, ¢,z) and p; are components of body force and the free charge density, respectively, and
¢;j, & and e;; are the elastic, dielectric and piezoelectric constants, respectively. For a functionally graded
piezoelectric cylindrical shell that is inhomogeneous along the radial direction, all material constants in-
cluding the mass density are functions of the radial variable .

Following a routine way (Fan and Zhang, 1992; Chen and Ding, 2000; Ding and Chen, 2001), the state
equation can be readily derived from Egs. (1) to (3). Here we just give the form in absence of body force and
free charge density:

e Y =MY 4

o ’ (4)
where Y = [u,, uy, 0y, Dy, Ozpy Grg, Uy, @]T is the state vector and M is an eighth-order operator matrix, which
is given in Appendix A. Eq. (4) was derived for a homogencous piezoelectric cylindrical shell (Ding and
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Chen, 2001), however, it is also valid for the one considered here that is inhomogeneous along the radial
direction.

4. Free vibration of a fluid-filled FGPM hollow cylinder

Consider a simply supported FGPM hollow cylinder of length L, inner radius R and thickness 4, Fig. 2.
The state vector Y can be expanded as
u, Rii.(n) cos(mn{) cos(ng)
ug Ry (n) sin(mnl) sin(ng)
G c1,0,+(n) sin(mn{) cos(ne)

)
Y- _ Eoo: i VehelsD, (1) cos(mnl) cos(ng) o

Oz — = c146-(17) cos(mnl) cos(ng)
Trg c140,4(n) sin(mn) sin(ng)

u, R, (1) sin(mn{) cos(n¢)

® R/ T @(n) cos(mn) cos(n)

where n = r/R, { = z/L, m and n are integers and o is the circular frequency. le represents the value of ¢y
at the outer cylindrical surface » = R + A. It is immediately seen that the solutions given in Eq. (5) satisfy the
simply supported mechanical conditions, i.e. u, = uy = 0., = 0 at z = 0 and L (Soldatos and Hadhgeorgiou,
1990; Ding et al., 1997b). Besides, the electric condition (D, = 0 at z = 0 and L) is known as the open-circuit
condition or insulated condition.

Substituting Eq. (5) into Eq. (4), and utilizing the orthogonality of trigonometric functions, one can
obtain for an arbitrary couple of (m,n):

L _py, (6)

Fig. 2. Cylindrical shell section.



952 W.Q. Chen et al. | International Journal of Solids and Structures 41 (2004) 947-964

where V = [uz,u¢,a,,,D,,aZ,,o,¢,u,, ] Denoting

Rmm/L = A, R*w?p! /c = 6’126’13/(011044) - 6’23/041;4 =d,
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the coefficient matrix D is expressed as
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For the present problem, the coefficient matrix D is not constant, making it difficult to get the solution to
Eq. (6) directly. Here we employ the approximate laminate model, for which the cylinder is equally divided
into p thin layers with the thickness (%/p) being very small. Thus, the coefficient matrix D can be assumed
constant within each layer (denoted as D; in the jth layer). In the following, the matrix D; is assumed to
take its value at each mid-plane, i.e. in Eq (8), we have cas = caal, 1, 2;-1)/(2pr)» €tC- in the ]th layer. Now
within the layer, Eq. (6) can be solved as

V(n) =exp[(n —no)DV(n,) (njo =1+ —Dh/(pR) <n<n; =14 jh/(pR)). 9)

From Eq. (9), the following recurrence formulas are derived:
V(n;) = explhD;/(pR)] - V(1) (G =1,2,....p). (10)
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By virtue of the continuity conditions of state variables at each fictitious interface, one can obtain from Eq.
(10),

Vi =TV, (11)

where T = Hjl.:p exp[hD;/(pR)], and V and V' are the state vectors at the inner and outer cylindrical

surfaces, respectively.
For a hollow cylinder completely filled with compressible, non-viscous fluid, the mechanical boundary
conditions at the inner and outer cylindrical surfaces are known as (Chen et al., 1997; Chen and Ding, 1999)

68}' = _QZQ(I)a(r)pf/plv 6-?9 = 6?2 = 6-1' = 5-i0 = 6-712 = 0’ (12)
where p; is the density of fluid (p; = 0 corresponds to the case in absence of fluid), and

J.(v) 2

S — 2
{n—l(U) —Jun1(v) v’ i
Q(l): Z» 172:0, (13)
L 2 L
. m\v 4 — _ 0
L@+ L@ o0 T T

where J,(v) and I,(v) are Bessel function and modified Bessel function of the first kind, respectively,
v? = (2/c}) - @* — 7%, in which ¢; is the sound velocity in fluid and ¢, = \/cl,/p' is the velocity of elastic
wave in the solid.

In addition, there are two types of electrical conditions at the inner or outer cylindrical surfaces:

Open circuit : D, =0; Closed circuit or shorted : @ =0, atr=R orr=R+h (14)

By applying the boundary conditions mentioned above in Eq. (11), we can acquire a system of linear
equations. For example, in the case of both surfaces shorted, we can arrive at

1 0

u. u;
iy iy
0 —~0(V)a.p;/p!
Dl D,
o =T 0 (15)
0 0
i, i,
0 0
Considering the third, fifth, sixth, and eighth equations in Eq. (15), yields
1 N0
0 Ty T Ty T3y — T33QEQ(1)Pf/P1 U
Ol _ |7 Tso Tsa Ts7— Tssng(l)Pf/P1 Uy (16)
0 T To Tu To—TaQ0(1)pc/p! D, [~
0 Ty T Tw Ty—Ta@0()p/p'] &

where T;; are elements of the matrix T. Since Eq. (16) shall have non-trivial solution, the determinant of
coefficients must vanish. Hence the frequency equation of a fluid-filled orthotropic FGPM hollow cylinder
with two surfaces electrically shorted is obtained as
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Ty T Ty Ts7— T33QZQ(1)pf/pl

Ty Tn Tu To—Ts@0)p/p'| _ (17)
To To T To— TuQ0(1)p/p! .

Ty Ty Toa Ty — Tss@0(1)pg/p!

For other combinations of electric boundary conditions, the frequency equations can be similarly obtained
and omitted here.

5. Free vibration of a fluid-filled LPM hollow cylinder

Obviously, the above analysis can be applied to a fluid-filled N-layered piezoelectric hollow cylinder. In
this case, we divide any layer into many sub-layers. Thus, within the mth layer, for example, we can obtain
similarly

VI =T,V) (m=1.2,...,N), (18)

where T,, = ]_[jl_p” exp(h mD”’ /pnR), here p, and h, are the divided number and the thickness of the mth
layer, respectively, and VO and V1 are the state vectors at the inner and outer cylindrical surfaces of the mth
layer, respectively.

Since the state variables are continuous at the interface between neighboring layers, we can derive from
Eq. (18),

V=TV, (19)

where T = [[\_, T,.
The proceeding analysis then is identical to that for an FGPM hollow cylinder.

6. Numerical examples

Example 1 (Free vibration of an infinite homogeneous piezoelectric hollow cylinder). For an infinite piezo-
electric hollow cylinder, the state vector Y can be expanded as

u, Raz(’/]) cos (I’l(,b)

u, Ritg () sin ()

G, c44a,,i) cos(ng)

D, - v/ caut33Dr(17) cos(n i(9—ot

Y=o [~ Z: 6’4402r(77)( 2>S(n<§> P 2

Orp C440-rq’>(’7)s ( )

ur R, (i )CO (n)

o Ry/cyy/e3®(n) cos(ngp)

where y is the non-dimensional axial wave number and ¢ = z/R. The followed analysis is similar to that
described earlier in this paper and omitted here for brevity.

Table 1 presents the lowest non-dimensional natural frequencies (2 = wR+/p'/cl,) of a PZT-4 homo-
geneous hollow cylinder without internal fluid (empty cylinder, corresponding to p; = 0). The electric
boundary condition is assumed to be shorted at both inner and outer cylindrical surfaces. The material
constants of PZT-4 are listed in Table 2.
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Table 1
Lowest natural frequencies of an infinite PZT-4 hollow cylinder with both surfaces shorted
x = 0.005 % = 0.500 7 = 1.000
n=20 n=1 n=2 n=2 n=20 n=1 n=2
Paul and Venkatesan (1987) Missed  Missed 1.09614  1.42886 1.30666  2.05896  Missed 1.74713
Ding et al. (1997a) 0.01582  0.00013  1.09611 1.43728 0.69679 1.29820 2.07361 1.65614  1.90402
Present 0.01588  0.00013  1.09448  1.44270 0.69744 1.24537 2.07745 1.65696  1.90435
Table 2
Material constants of two homogeneous piezoelectric materials
Property ci1 C12 ci3 (&3] (&5] €33 Ca4 Css C66
P (Ba,NaNbsOys) 239 10.4 5.0 24.7 5.2 13.5 6.5 6.6 7.6
P! (PZT-4) 13.9 7.8 7.4 13.9 7.4 11.5 2.56 2.56 3.05
€1s €4 €3] €3 €33 &1 €22 £33 14
P (Ba,NaNbsO,5) 2.8 34 -0.4 -0.3 43 196 201 28 5.3
¥ (PZT-4) 12.7 12.7 -5.2 =52 15.1 650 650 560 7.5

Units: ¢; (10'° N/m?), ¢; (107" F/m), ¢;; (C/m?), p (kg/m®).

As shown in Table 1, the comparison with Ding et al. (1997a) shows a reasonable agreement. The
observation reported in Ding et al. (1997a) that some frequencies were missed by Paul and Venkatesan

(1987) is validated here.

The dispersion curves of the non-dimensional wave phase velocity V (= Q/y) versus the non-dimensional
axial wave number y are plotted in Figs. 3 and 4 for #/R = 0.05 and 0.5, respectively. The cylinder is
supposed to be shorted at both cylindrical surfaces. It is shown the dispersion curves are quite different for

25
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S 333
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Fig. 3. Variation of non-dimensional wave phase velocity, 7, with non-dimensional axial wave number, y (/R = 0.05).
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Fig. 4. Variation of non-dimensional wave phase velocity, 7, with non-dimensional axial wave number, y (#/R = 0.5).

different modes (» = 0 for longitudinal mode and » > 0 for flexural modes). They are also different for thin
and thick piezoelectric cylinders, although all curves gradually become invariant with the further increase of
% For example, for the mode number n = 1, V first increases and then decreases after a turning point when
h/R = 0.05. When #/R = 0.5, however, it first increases, then decreases and finally increases with y. This
indicates that the observation for a thin shell could not be simply extended to for a thick shell.

Example 2 (Free vibration of a fluid-filled FGPM hollow cylinder). To analyze the free vibration behavior of
FGPM hollow cylinder, the distributions of material properties must be assumed. There are several models
in literature (Delale and Erdogan, 1988; Fuchiyama and Noda, 1995; Liu et al., 1999). Here we consider the
following two typical models:

Model I: ¥ = ¥°(1 — )+ ¥'f and Model IT: ¥ = ¥°(¥'/¥°)

where = [(r — R)/h]", ¥ represents an arbitrary material constant of the FGPM, while ¥° and ¥' are the
corresponding ones for two homogeneous materials. The material constants of the two homogeneous
piezoelectric materials considered in this paper, PZT-4 and Ba,NaNbs;Os (Dieulesaint and Royer, 1980),
are listed in Table 2. Fig. 5 shows the variations of the elastic constant ¢;; along the thickness direction for
several values of x, where solid and dotted lines correspond to Models I and 11, respectively. It is seen that
there is certain difference between Models I and 11 especially when « is small. However, the variations of
material constants of the two models along the thickness direction are very similar.

Fig. 6 displays the curves of the lowest non-dimensional natural frequency Q versus the gradient pa-
rameter k for different circumferential wave numbers (n). The thickness-to-inner radius ratio of the cylinder
and the non-dimensional axial wave number are taken to be #/R = 0.2 and A = mnR/L = 3, respectively.
The filled fluid considered here is water with p;/p'! = 0.13 and ¢;/c, = 0.27. In addition, both surfaces of the
cylinder are electrically shorted. In order to acquire a high numerical accuracy, we divide the cylinder into
60 layers. For the sake of comparison, the corresponding curves of the empty cylinder with other
parameters identical are shown in Fig. 7.
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Fig. 5. Variation of elastic constant ¢;; (GPa) through thickness.
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Fig. 6. Variation of lowest non-dimensional frequency Q of fluid-filled cylinder with .

From the above two figures, we can see that the lowest natural frequency Q of the fluid-filled cylinder is
always lower than those of the empty cylinder, which is just due to the well-known “added mass effect”
(Jain, 1974). This effect is obviously different for different wave modes. As we can see, in the empty case, the
lowest natural frequency of the cylinder corresponds to the flexural mode n = 2, whereas it corresponds to
the axisymmetric mode » = 0 for the fluid-filled cylinder. It is also interesting to note that the presence of
fluid medium can reduce the impact of the gradient parameter k on the frequency, which can be seen from
the relatively gently varying curves in Fig. 6 as compared to those in Fig. 7. Furthermore, the difference
between the frequency curves for Models I and 1T materials dwindles when the cylinder is filled with fluid.
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Fig. 7. Variation of lowest non-dimensional frequency Q of empty cylinder with «.

O:nm=0,0:n=1, «:n=2, x:n=3, ¥:n=4

04 1 1 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

h/R

Fig. 8. Variation of lowest non-dimensional frequency Q with 4/R.

The effects of #/R and A on Q are depicted in Figs. 8 and 9, respectively. In Fig. 8, Model I material is
employed with x = 1 and 4 = 2, while Model II material is assumed to obtain the results in Fig. 9 with
k =2 and h/R = 1. The filled fluid is still water. Also, the number of layers is p = 60, which can assure the
relative error of these results within 1074,

It is shown that the non-dimensional frequency Q2 increases rapidly with //R at the initial stage, but then
it keeps almost invariant. This implies that the frequency of the cylinder with 4/R = 2.0, for example, will
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2

Fig. 9. Variation of lowest non-dimensional natural frequency Q with A.

be very close to that of an infinite solid with a cylinder cavity of radius R. As expected (Mirsky, 1964), Fig. 9
shows that the frequency increases with the non-dimensional axial wave number 4. The curve for n =1
seems very different from the others; however, this is not always the case when the parameters of the filled
fluid or the geometric size of the cylinder are changed. The results are not presented here for brevity, but the
reader is referred to Ding et al. (1997a) for similar results of a homogeneous cylinder. In the calculation, we
also find that for the purely axial vibration (m = 0), the frequencies corresponding to n = 0,1 are quite
different from those for the non-axial vibration (4 # 0), as shown in Fig. 9.

Example 3 (Free vibration of a fluid-filled LPM hollow cylinder). Consider a three-layered LPM hollow
cylinder, whose inner and outer layers are made of PZT-4, while the mid-layer is Ba,NaNbsO;s. The geo-
metry of the layersis #; : by : A3 : R=10.3:0.4: 0.3 : 1. For the sake of precision, each layer is divided into
20 sub-layers.

Figs. 10 and 11 display the curves of the lowest non-dimensional frequency Q versus fluid parameters
pe/p! and c;/cs, respectively, with different combinations of electrical boundary conditions at the inner and
outer cylindrical surfaces. The non-dimensional axial wave number in both figures is taken to be 1 = 2. In
addition, results in Fig. 10 are obtained for ¢;/c, = 0.27, while Fig. 11 is for p;/p! = 0.13.

As shown in Fig. 10, the frequency almost keeps invariant with the increase of p;/p', while it increases
with ¢f/c; significantly as shown in Fig. 11. This indicates that the natural frequency is more sensitive to
cr/cs than to p;/p'. This property should be very important for the design of fluid-filled cylinders. It is
noted here that totally four types of electric conditions (i.e. both surfaces shorted, inner shorted and outer
open, inner open and outer shorted, and both open) are considered and the results are simultaneously given
in Figs. 10 and 11. The curves for different electrical boundary conditions in Fig. 10 are wrapped together
indicating that the electric conditions have little influence on the lowest frequency. However, with the in-
crease of the velocity ratio, the frequencies will be different for different electric boundary conditions es-
pecially for n =4, as shown in Fig. 11, where the curves are not specified by the respective electric
conditions but are shown just for illustration.
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7. Conclusions

In this paper, the coupled free vibration of a functionally graded piezoelectric hollow cylinder filled with
a non-viscous, compressible fluid medium is investigated. Owing to the disadvantage characterized by the
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conventional shell theories in modeling the FGM structures, the state-space method is employed, which is
completely based on the three-dimensional theory of piezoelasticity. Because of the curvilinear coordinates
and the inhomogeneity of material, the resulting state equation is with variable coefficients, of which the
solution is difficult to obtain directly. For the sake of simplicity, an approximate laminate model is adopted
to transform the state equation to the one with constant coefficients whose solution can be obtained using
matrix theory.

Numerical calculations are performed. Comparison with existent results for an infinite empty piezo-
electric hollow cylinder shows a good agreement, validating the correctness and effectiveness of the
present method. Numerical results also show that frequency of the cylinder can differ significantly in the
presence of a fluid medium. Thus when a structure is contacting with ambient media, the coupling effect
should be taken into account to give an accurate prediction. Two different models considering the
functionally graded property of material are adopted in the paper. Results show that the material design
based on the FGM concept can play an important role in practical engineering.

Since no assumptions are introduced on the deformations or stress fields in the cylinder, the results
presented in this paper can serve as benchmarks for clarifying the reliability of various approximate shell
theories or numerical methods. The only approximation is introduced when the laminate model is em-
ployed. However, when the number of layers increases, the solution of the model will gradually approach
the exact one of the original cylinder. One significant merit of the model is that it allows one to deal
with arbitrary variations of the material constants. The variation of one material constant can also differ
from that of the other one. Combing with the state-space method, the numerical efficiency is very pro-
minent.
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Appendix A

The operator matrix M in Eq. (4) is defined as follows:

M, M,
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2 2
ky = ¢y — 012/011, ky = ¢y — 0126’13/0117 ky = ez — 012631/0117 ky = c33 — 013/011,

_ _ 2 _ 2
ks = es3 — 6’13931/6’11, ks = e33 + 931/011, o = Cs55€11 + €.
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