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Abstract

The free vibration of an arbitrarily thick orthotropic piezoelectric hollow cylinder with a functionally graded

property along the thickness direction and filled with a non-viscous compressible fluid medium is investigated. The

analysis is directly based on the three-dimensional exact equations of piezoelasticity using the so-called state space

formulations. The original functionally graded shell is approximated by a laminate model, of which the solution will

gradually approach the exact one when the number of layers increases. The effect of internal fluid can be taken into

consideration by imposing a relation between the fluid pressure and the radial displacement at the interface. Analytical

frequency equations are derived for different electrical boundary conditions at two cylindrical surfaces. As particular

cases, free vibration of multi-layered piezoelectric hollow cylinder and wave propagation in infinite homogeneous

cylinder are studied. Numerical comparison with available results is made and dispersion curves predicted from the

present three-dimensional analysis are given. Numerical examples are further performed to investigate the effects of

various parameters on the natural frequencies.
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1. Introduction

Since the piezoelectric phenomenon was first discovered by Pierre and Paul-Jacques Curie in 1880,

piezoelectric materials have attracted many attentions in both theoretical and engineering science and lots

of efforts have been made on the quality and variety of artificial piezoelectric materials, which have been

widely used to manufacture various sensors, conductors, actuators, etc. (Moulson and Herbert, 1990;

Morita et al., 1995; Uchino, 1996). In fact, piezoelectric materials have become one of the most widely used

smart or intelligent materials nowadays (Tzou and Anderson, 1992; Galassi et al., 2000). Experimental

evidence has also indicated that bones could be modeled as a piezoelectric cylindrical shell, which is in fact

inhomogeneous (Saha and Williams, 1996).
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In recent years, the concept of functionally graded materials (FGMs) has been further extended into

piezoelectric materials to improve the lifetime and reliability of advanced piezoelectric structures (Zhu et al.,

1995; Wu et al., 1996; Sakamura et al., 2000; Yamada et al., 2001; Ballato et al., 2001; Takahashi et al.,

2002). Smart structures or elements made of these so-called functionally graded piezoelectric materials
(FGPMs) are usually superior to the conventional laminated piezoelectric ones (such as the bimorphs)

because no discernible internal seams or boundaries exist and no internal stress peaks are caused when

voltage is applied and thus failure from interfacial debonding or from stress concentration can be avoided

(Wu et al., 1996; Li and Weng, 2002). Moreover, the performance of conventional homogeneous piezo-

electric structures can be improved by using the concept of FGM. For example, Takagi et al. (2002) applied

the modified classical lamination theory and the finite element method to optimize compositional profile of

functionally graded PZT/Pt piezoelectric bimorph actuator that will give a larger deflection and smaller

stress. To design advanced smart structures, it is necessary to thoroughly understand the static and dynamic
behaviors of FGPM structures in complex environments. The focus of this paper is to study the dynamic

behavior of fluid-filled FGPM cylindrical shells. The conventional homogeneous or laminated piezoelectric

cylindrical shells coupled with fluids are encountered in various applications like fluid control valve, ink jet

printer, and submarine ultrasonic transducers (Bugdayci et al., 1983; Grosh et al., 1998).

In this paper, the coupled vibration of an inhomogeneous orthotropic piezoelectric hollow cylinder filled

with internal compressible fluid is studied directly based on the three-dimensional equations of piezo-

elasticity. The cylinder is assumed to have a functionally graded property along the thickness direction

(radial direction) and is polarized in the axial direction. The state-space method is employed, which has the
particular superiority to study laminated plates and shells (Fan, 1996; Chen and Ding, 2001). We further

employ a laminate model (Fan and Zhang, 1992; Liu and Tani, 1991; Tanigawa, 1995; Chen and Ding,

2000) to approximate the FGPM hollow cylinder. It is obvious that the larger the number of layers involved

is, the accurate the model will be. By employing the continuity conditions of state variables between ad-

jacent layers, recurrence formulas are established. The frequency equation is then deduced for a simply

supported FGPM hollow cylinder filled with a compressible, non-viscous fluid medium with different

electrical boundary conditions imposed on the two cylindrical surfaces. The one for an infinite homo-

geneous piezoelectric hollow cylinder is considered as a particular case and numerical comparison is made
with available results. The effects of some related parameters on natural frequencies are also discussed.

The present method allows us to consider arbitrary variations of material properties along the thickness

direction. The 3D solution obtained here can provide a useful means of comparison in the development of

simplified shell theories of non-homogeneous FGPM cylindrical shells coupled with surrounding media.
2. Brief literature survey

Generally, the elastic deformation and electric field of piezoelectric materials are coupled, which makes

the governing equations very complex. The classical theories for plates and shells are not so suitable here

because the electric potential through the thickness is no longer linear so that higher-order representations

should be adopted (Rogacheva, 1994). Especially, these theories usually become inaccurate and even invalid

when the plate or shell becomes thicker, just as in the elastic case. Thus, in the most recent decade, much
investigation on piezoelectric cylindrical shells was to obtain 3D solutions (Ding et al., 1997a; Kapuria et al.,

1997; Chen and Shen, 1998). Xu and Noor (1996) analyzed the thermal piezoelastic response of a layered

piezoelectric material (LPM) cylindrical shell employing the transfer matrix method. Xu et al. (1997)

further studied the free vibrations of a thermal LPM cylindrical shell with initial stresses. Zhou et al. (1999)

established a state equation with constant coefficients by introducing a small parameter and considered the

static response of an LPM cylindrical shell. The polarized direction of piezoelectric cylindrical shell in the
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above-mentioned studies is considered to be along the radial direction. Wang (2001) investigated the one

polarized in the axial direction, but using the membrane shell theory.

Coupled vibrations of fluid-filled cylindrical shells were first considered by Junger and Mass (1952),

which was followed by Jain (1974), who discussed the free vibrations of orthotropic cylindrical shells filled
partially or completely with an incompressible, non-viscous fluid using a shear shell theory. Recently, based

on Love�s shell theory, Zhang et al. (2001) expressed the displacements of the shell as the form of wave

propagation to analyze the coupled vibrations of fluid-filled cylindrical shell. There are also several three-

dimensional analyses of fluid-filled cylindrical shells. Chen et al. (1997) used the Frobenius power series

method to investigate the free vibrations of fluid-filled orthotropic cylindrical shells. Chen and Ding (1999)

employed a displacement separation formula to simplify the basic equations of a transversely isotropic

medium and considered the vibration of a fluid-filled transversely isotropic cylindrical shell. The coupled

analysis of piezoelectric cylindrical shells has also attracted particular interests, since it is essential for their
frequent encounters in some engineering applications (Babaev and Savin, 1988; Babaev et al., 1990; Shulga

and Melnik, 1996; Ding et al., 1997a). The 3D coupled free vibration of a fluid-filled piezoelectric hollow

sphere was considered by Chen et al. (2001) employing the Frobenius power series method.

The concept of FGM was first introduced by a group of Japanese scientists to address the needs of

aggressive environment of thermal shock (Yamanouchi et al., 1990). Since then, FGMs have received more

and more attention. On the macroscopic scale, FGMs are anisotropic, inhomogeneous and possess spatially

continuous mechanical properties. Heretofore, a lot of works on the FGM cylindrical shells have been

carried out. For example, employing Love�s shell theory and Rayleigh–Ritz method, Loy et al. (1999)
obtained the natural frequencies of a simply supported FGM cylindrical shell. Applying the same method

but a modified expression of spatial displacement fields, Pradhan et al. (2000) further studied the vibration

characteristics of the FGM cylindrical shell under various boundary conditions. Tarn (2001) obtained some

exact thermoelastic solutions of an anisotropic cylinder with a particular functionally graded property. Han

et al. (2001) presented a hybrid numerical method to investigate transient waves in a cylinder made of

FGM; the cylinder was divided into some cylindrical elements that the material properties were approxi-

mated with piecewise linear functions. It is noted here that as in the early of 1990s, Liu and Tani have

investigated the wave propagation in FGPM plates of which the material properties are approximated by
piecewise linear functions (Liu and Tani, 1991, 1992). Chen and Ding (2000, 2002) employed the state-space

approach to analyze the bending and free vibration problems of FGPM plates using a laminate model, for

which material properties were treated as piecewise constants. Recently, Wu et al. (2002) introduced a high-

order shell theory and examined the electromechanical behavior of graded piezoelectric shells. Wu et al.

(2004) obtained an exact solution for a piezothermoelastic cylindrical shell with radial inhomogeneity

acting as a smart device subjected to thermal and mechanical loadings.
3. State equation

In cylindrical coordinates ðr;/; zÞ, Fig. 1, the basic equations of orthotropic piezoelectric materials

polarized in the axial direction are (Ding and Chen, 2001)
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Fig. 1. Cylindrical coordinates and stresses.
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Generalized constitutive relations:
rrr ¼ c11crr þ c12c// þ c13czz � e31Ez; rr/ ¼ 2c66cr/;

r// ¼ c12crr þ c22c// þ c23czz � e32Ez; r/z ¼ 2c44c/z � e24E/;

rzz ¼ c13crr þ c23c// þ c33czz � e33Ez; rzr ¼ 2c55czr � e15Er;

D/ ¼ 2e24c/z þ e22E/; Dr ¼ 2e15czr þ e11Er; Dz ¼ e31crr þ e32c// þ e33czz þ e33Ez:

ð2Þ
Governing equations:
orzr

or
þ or/z

ro/
þ orzz

oz
þ rzr

r
þ fz ¼ q

o2uz
ot2

;

orr/

or
þ or//

ro/
þ or/z

oz
þ 2rr/

r
þ f/ ¼ q

o2u/
ot2

;

orrr

or
þ orr/

ro/
þ orzr

oz
þ rrr � r//

r
þ fr ¼ q

o2ur
ot2

;

oDr

or
þ oD/

ro/
þ oDz

oz
þ Dr

r
¼ qf ;

ð3Þ
where U, E‘ and D‘ (‘ ¼ r;/; z) are the electric potential, electric intensity and electric displacements, re-

spectively, f‘ (‘ ¼ r;/; z) and qf are components of body force and the free charge density, respectively, and

cij, eij and eij are the elastic, dielectric and piezoelectric constants, respectively. For a functionally graded
piezoelectric cylindrical shell that is inhomogeneous along the radial direction, all material constants in-

cluding the mass density are functions of the radial variable r.
Following a routine way (Fan and Zhang, 1992; Chen and Ding, 2000; Ding and Chen, 2001), the state

equation can be readily derived from Eqs. (1) to (3). Here we just give the form in absence of body force and

free charge density:
o

or
Y ¼ MY; ð4Þ
where Y ¼ ½uz; u/; rrr;Dr; rzr; rr/; ur;U�T is the state vector and M is an eighth-order operator matrix, which

is given in Appendix A. Eq. (4) was derived for a homogeneous piezoelectric cylindrical shell (Ding and
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Chen, 2001), however, it is also valid for the one considered here that is inhomogeneous along the radial

direction.
4. Free vibration of a fluid-filled FGPM hollow cylinder

Consider a simply supported FGPM hollow cylinder of length L, inner radius R and thickness h, Fig. 2.
The state vector Y can be expanded as
Y ¼

uz
u/
rrr

Dr

rzr

rr/

ur
U
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eixt; ð5Þ
where g ¼ r=R, f ¼ z=L, m and n are integers and x is the circular frequency. c144 represents the value of c44
at the outer cylindrical surface r ¼ Rþ h. It is immediately seen that the solutions given in Eq. (5) satisfy the
simply supported mechanical conditions, i.e. ur ¼ u/ ¼ rzz ¼ 0 at z ¼ 0 and L (Soldatos and Hadhgeorgiou,

1990; Ding et al., 1997b). Besides, the electric condition (Dz ¼ 0 at z ¼ 0 and L) is known as the open-circuit

condition or insulated condition.

Substituting Eq. (5) into Eq. (4), and utilizing the orthogonality of trigonometric functions, one can

obtain for an arbitrary couple of ðm; nÞ:

dV

dg
¼ DV; ð6Þ
Fig. 2. Cylindrical shell section.
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where V ¼ ½�uuz; �uu/; �rrrr;Dr; �rrzr; �rrr/; �uur;U�T. Denoting
Rmp=L ¼ k; R2x2q1=c144 ¼ X2; c12c13=ðc11c144Þ � c23=c144 ¼ d1;

e33
ffiffiffiffiffiffiffiffiffiffiffi
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1
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the coefficient matrix D is expressed as
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� �
; ð8Þ
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For the present problem, the coefficient matrix D is not constant, making it difficult to get the solution to

Eq. (6) directly. Here we employ the approximate laminate model, for which the cylinder is equally divided
into p thin layers with the thickness (h=p) being very small. Thus, the coefficient matrix D can be assumed

constant within each layer (denoted as Dj in the jth layer). In the following, the matrix Dj is assumed to

take its value at each mid-plane, i.e. in Eq. (8), we have c44 ¼ c44jg¼1þð2j�1Þh=ð2pRÞ, etc. in the jth layer. Now

within the layer, Eq. (6) can be solved as
VðgÞ ¼ exp½ðg� gj0ÞDj�Vðgj0Þ ðgj0 ¼ 1þ ðj� 1Þh=ðpRÞ6 g6 gj1 ¼ 1þ jh=ðpRÞÞ: ð9Þ
From Eq. (9), the following recurrence formulas are derived:
Vðgj1Þ ¼ exp½hDj=ðpRÞ� � Vðgj0Þ ðj ¼ 1; 2; . . . ; pÞ: ð10Þ
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By virtue of the continuity conditions of state variables at each fictitious interface, one can obtain from Eq.

(10),
V1 ¼ TV0; ð11Þ
where T ¼
Q1

j¼p exp½hDj=ðpRÞ�, and V0 and V1 are the state vectors at the inner and outer cylindrical

surfaces, respectively.

For a hollow cylinder completely filled with compressible, non-viscous fluid, the mechanical boundary

conditions at the inner and outer cylindrical surfaces are known as (Chen et al., 1997; Chen and Ding, 1999)
�rr0
rr ¼ �X2Qð1Þ�uu0rqf=q

1; �rr0
rh ¼ �rr0

rz ¼ �rr1
rr ¼ �rr1

rh ¼ �rr1
rz ¼ 0; ð12Þ
where qf is the density of fluid (qf ¼ 0 corresponds to the case in absence of fluid), and
Qð1Þ ¼

JnðvÞ
Jn�1ðvÞ � Jnþ1ðvÞ

� 2
v
; v2 > 0;

1

n
; v2 ¼ 0;

Inð~vvÞ
In�1ð~vvÞ þ Inþ1ð~vvÞ

� 2
~vv
; v2 ¼ �~vv2 < 0;

8>>>>>><
>>>>>>:

ð13Þ
where JnðvÞ and InðvÞ are Bessel function and modified Bessel function of the first kind, respectively,

v2 ¼ ðc2s=c2f Þ � X2 � k2, in which cf is the sound velocity in fluid and cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c144=q1

p
is the velocity of elastic

wave in the solid.

In addition, there are two types of electrical conditions at the inner or outer cylindrical surfaces:
Open circuit : Dr ¼ 0; Closed circuit or shorted : U ¼ 0; at r ¼ R or r ¼ Rþ h: ð14Þ
By applying the boundary conditions mentioned above in Eq. (11), we can acquire a system of linear

equations. For example, in the case of both surfaces shorted, we can arrive at
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Considering the third, fifth, sixth, and eighth equations in Eq. (15), yields
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2
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8>><
>>:

9>>=
>>;

0

; ð16Þ
where Tij are elements of the matrix T. Since Eq. (16) shall have non-trivial solution, the determinant of
coefficients must vanish. Hence the frequency equation of a fluid-filled orthotropic FGPM hollow cylinder

with two surfaces electrically shorted is obtained as
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T31 T32 T34 T37 � T33X
2Qð1Þqf=q
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T51 T52 T54 T57 � T53X
2Qð1Þqf=q

1
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2Qð1Þqf=q

1
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1

��������

��������
¼ 0: ð17Þ
For other combinations of electric boundary conditions, the frequency equations can be similarly obtained

and omitted here.
5. Free vibration of a fluid-filled LPM hollow cylinder

Obviously, the above analysis can be applied to a fluid-filled N -layered piezoelectric hollow cylinder. In

this case, we divide any layer into many sub-layers. Thus, within the mth layer, for example, we can obtain
similarly
V1
m ¼ TmV

0
m ðm ¼ 1; 2; . . . ;NÞ; ð18Þ
where Tm ¼
Q1

j¼pm
expðhmDm

j =pmRÞ, here pm and hm are the divided number and the thickness of the mth
layer, respectively, and V0

m and V1
m are the state vectors at the inner and outer cylindrical surfaces of the mth

layer, respectively.

Since the state variables are continuous at the interface between neighboring layers, we can derive from

Eq. (18),
V1
N ¼ T�V0

1; ð19Þ
where T� ¼
QN

m¼1 Tm.

The proceeding analysis then is identical to that for an FGPM hollow cylinder.
6. Numerical examples

Example 1 (Free vibration of an infinite homogeneous piezoelectric hollow cylinder). For an infinite piezo-

electric hollow cylinder, the state vector Y can be expanded as
Y ¼

uz
u/
rrr

Dr

rzr

rr/

ur
U
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1
33

p
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c144�rrzrðgÞ cosðn/Þ
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R�uurðgÞ cosðn/Þ

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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1
33

p
UðgÞ cosðn/Þ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

eiðv#�xtÞ; ð20Þ
where v is the non-dimensional axial wave number and # ¼ z=R. The followed analysis is similar to that

described earlier in this paper and omitted here for brevity.

Table 1 presents the lowest non-dimensional natural frequencies ðX ¼ xR
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q1=c144

p
Þ of a PZT-4 homo-

geneous hollow cylinder without internal fluid (empty cylinder, corresponding to qf ¼ 0). The electric
boundary condition is assumed to be shorted at both inner and outer cylindrical surfaces. The material

constants of PZT-4 are listed in Table 2.



Table 1

Lowest natural frequencies of an infinite PZT-4 hollow cylinder with both surfaces shorted

v ¼ 0:005 v ¼ 0:500 v ¼ 1:000

n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 0 n ¼ 1 n ¼ 2

Paul and Venkatesan (1987) Missed Missed 1.09614 1.42886 Missed 1.30666 2.05896 Missed 1.74713

Ding et al. (1997a) 0.01582 0.00013 1.09611 1.43728 0.69679 1.29820 2.07361 1.65614 1.90402

Present 0.01588 0.00013 1.09448 1.44270 0.69744 1.24537 2.07745 1.65696 1.90435

Table 2

Material constants of two homogeneous piezoelectric materials

Property c11 c12 c13 c22 c23 c33 c44 c55 c66

W0 (Ba2NaNb5O15) 23.9 10.4 5.0 24.7 5.2 13.5 6.5 6.6 7.6

W1 (PZT-4) 13.9 7.8 7.4 13.9 7.4 11.5 2.56 2.56 3.05

e15 e24 e31 e32 e33 e11 e22 e33 q

W0 (Ba2NaNb5O15) 2.8 3.4 )0.4 )0.3 4.3 196 201 28 5.3

W1 (PZT-4) 12.7 12.7 )5.2 )5.2 15.1 650 650 560 7.5

Units: cij (1010 N/m2), eij (10�11 F/m), eij (C/m2), q (kg/m3).
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As shown in Table 1, the comparison with Ding et al. (1997a) shows a reasonable agreement. The

observation reported in Ding et al. (1997a) that some frequencies were missed by Paul and Venkatesan

(1987) is validated here.

The dispersion curves of the non-dimensional wave phase velocity V (¼ X=v) versus the non-dimensional
axial wave number v are plotted in Figs. 3 and 4 for h=R ¼ 0:05 and 0.5, respectively. The cylinder is

supposed to be shorted at both cylindrical surfaces. It is shown the dispersion curves are quite different for
Fig. 3. Variation of non-dimensional wave phase velocity, V , with non-dimensional axial wave number, v (h=R ¼ 0:05).



Fig. 4. Variation of non-dimensional wave phase velocity, V , with non-dimensional axial wave number, v (h=R ¼ 0:5).
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different modes (n ¼ 0 for longitudinal mode and n > 0 for flexural modes). They are also different for thin
and thick piezoelectric cylinders, although all curves gradually become invariant with the further increase of

v. For example, for the mode number n ¼ 1, V first increases and then decreases after a turning point when

h=R ¼ 0:05. When h=R ¼ 0:5, however, it first increases, then decreases and finally increases with v. This
indicates that the observation for a thin shell could not be simply extended to for a thick shell.

Example 2 (Free vibration of a fluid-filled FGPM hollow cylinder). To analyze the free vibration behavior of

FGPM hollow cylinder, the distributions of material properties must be assumed. There are several models

in literature (Delale and Erdogan, 1988; Fuchiyama and Noda, 1995; Liu et al., 1999). Here we consider the
following two typical models:
Model I : W ¼ W0ð1� bÞ þW1b and Model II : W ¼ W0ðW1=W0Þb;
where b ¼ ½ðr � RÞ=h�j, W represents an arbitrary material constant of the FGPM, while W0 and W1 are the

corresponding ones for two homogeneous materials. The material constants of the two homogeneous

piezoelectric materials considered in this paper, PZT-4 and Ba2NaNb5O15 (Dieulesaint and Royer, 1980),

are listed in Table 2. Fig. 5 shows the variations of the elastic constant c11 along the thickness direction for

several values of j, where solid and dotted lines correspond to Models I and II, respectively. It is seen that

there is certain difference between Models I and II especially when j is small. However, the variations of

material constants of the two models along the thickness direction are very similar.

Fig. 6 displays the curves of the lowest non-dimensional natural frequency X versus the gradient pa-
rameter j for different circumferential wave numbers (n). The thickness-to-inner radius ratio of the cylinder

and the non-dimensional axial wave number are taken to be h=R ¼ 0:2 and k ¼ mpR=L ¼ 3, respectively.

The filled fluid considered here is water with qf=q
1 ¼ 0:13 and cf=cs ¼ 0:27. In addition, both surfaces of the

cylinder are electrically shorted. In order to acquire a high numerical accuracy, we divide the cylinder into

60 layers. For the sake of comparison, the corresponding curves of the empty cylinder with other

parameters identical are shown in Fig. 7.



Fig. 5. Variation of elastic constant c11 (GPa) through thickness.

Fig. 6. Variation of lowest non-dimensional frequency X of fluid-filled cylinder with j.
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From the above two figures, we can see that the lowest natural frequency X of the fluid-filled cylinder is

always lower than those of the empty cylinder, which is just due to the well-known ‘‘added mass effect’’

(Jain, 1974). This effect is obviously different for different wave modes. As we can see, in the empty case, the

lowest natural frequency of the cylinder corresponds to the flexural mode n ¼ 2, whereas it corresponds to
the axisymmetric mode n ¼ 0 for the fluid-filled cylinder. It is also interesting to note that the presence of

fluid medium can reduce the impact of the gradient parameter j on the frequency, which can be seen from

the relatively gently varying curves in Fig. 6 as compared to those in Fig. 7. Furthermore, the difference

between the frequency curves for Models I and II materials dwindles when the cylinder is filled with fluid.



Fig. 7. Variation of lowest non-dimensional frequency X of empty cylinder with j.

Fig. 8. Variation of lowest non-dimensional frequency X with h=R.
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The effects of h=R and k on X are depicted in Figs. 8 and 9, respectively. In Fig. 8, Model I material is

employed with j ¼ 1 and k ¼ 2, while Model II material is assumed to obtain the results in Fig. 9 with
j ¼ 2 and h=R ¼ 1. The filled fluid is still water. Also, the number of layers is p ¼ 60, which can assure the

relative error of these results within 10�4.

It is shown that the non-dimensional frequency X increases rapidly with h=R at the initial stage, but then

it keeps almost invariant. This implies that the frequency of the cylinder with h=R ¼ 2:0, for example, will



Fig. 9. Variation of lowest non-dimensional natural frequency X with k.
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be very close to that of an infinite solid with a cylinder cavity of radius R. As expected (Mirsky, 1964), Fig. 9
shows that the frequency increases with the non-dimensional axial wave number k. The curve for n ¼ 1

seems very different from the others; however, this is not always the case when the parameters of the filled

fluid or the geometric size of the cylinder are changed. The results are not presented here for brevity, but the

reader is referred to Ding et al. (1997a) for similar results of a homogeneous cylinder. In the calculation, we

also find that for the purely axial vibration (m ¼ 0), the frequencies corresponding to n ¼ 0; 1 are quite

different from those for the non-axial vibration (k 6¼ 0), as shown in Fig. 9.

Example 3 (Free vibration of a fluid-filled LPM hollow cylinder). Consider a three-layered LPM hollow
cylinder, whose inner and outer layers are made of PZT-4, while the mid-layer is Ba2NaNb5O15. The geo-

metry of the layers is h1 : h2 : h3 : R ¼ 0:3 : 0:4 : 0:3 : 1. For the sake of precision, each layer is divided into

20 sub-layers.

Figs. 10 and 11 display the curves of the lowest non-dimensional frequency X versus fluid parameters

qf=q
1 and cf=cs, respectively, with different combinations of electrical boundary conditions at the inner and

outer cylindrical surfaces. The non-dimensional axial wave number in both figures is taken to be k ¼ 2. In

addition, results in Fig. 10 are obtained for cf=cs ¼ 0:27, while Fig. 11 is for qf=q
1 ¼ 0:13.

As shown in Fig. 10, the frequency almost keeps invariant with the increase of qf=q
1, while it increases

with cf=cs significantly as shown in Fig. 11. This indicates that the natural frequency is more sensitive to

cf=cs than to qf=q
1. This property should be very important for the design of fluid-filled cylinders. It is

noted here that totally four types of electric conditions (i.e. both surfaces shorted, inner shorted and outer

open, inner open and outer shorted, and both open) are considered and the results are simultaneously given

in Figs. 10 and 11. The curves for different electrical boundary conditions in Fig. 10 are wrapped together

indicating that the electric conditions have little influence on the lowest frequency. However, with the in-

crease of the velocity ratio, the frequencies will be different for different electric boundary conditions es-

pecially for n ¼ 4, as shown in Fig. 11, where the curves are not specified by the respective electric
conditions but are shown just for illustration.



Fig. 10. Variation of lowest non-dimensional natural frequency X with qf=q
1.

Fig. 11. Variation of lowest non-dimensional natural frequency X with cf=cs.
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7. Conclusions

In this paper, the coupled free vibration of a functionally graded piezoelectric hollow cylinder filled with

a non-viscous, compressible fluid medium is investigated. Owing to the disadvantage characterized by the
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conventional shell theories in modeling the FGM structures, the state-space method is employed, which is

completely based on the three-dimensional theory of piezoelasticity. Because of the curvilinear coordinates

and the inhomogeneity of material, the resulting state equation is with variable coefficients, of which the

solution is difficult to obtain directly. For the sake of simplicity, an approximate laminate model is adopted
to transform the state equation to the one with constant coefficients whose solution can be obtained using

matrix theory.

Numerical calculations are performed. Comparison with existent results for an infinite empty piezo-

electric hollow cylinder shows a good agreement, validating the correctness and effectiveness of the

present method. Numerical results also show that frequency of the cylinder can differ significantly in the

presence of a fluid medium. Thus when a structure is contacting with ambient media, the coupling effect

should be taken into account to give an accurate prediction. Two different models considering the

functionally graded property of material are adopted in the paper. Results show that the material design
based on the FGM concept can play an important role in practical engineering.

Since no assumptions are introduced on the deformations or stress fields in the cylinder, the results

presented in this paper can serve as benchmarks for clarifying the reliability of various approximate shell

theories or numerical methods. The only approximation is introduced when the laminate model is em-

ployed. However, when the number of layers increases, the solution of the model will gradually approach

the exact one of the original cylinder. One significant merit of the model is that it allows one to deal

with arbitrary variations of the material constants. The variation of one material constant can also differ

from that of the other one. Combing with the state-space method, the numerical efficiency is very pro-
minent.
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Appendix A

The operator matrix M in Eq. (4) is defined as follows:
M ¼ M1 M2

M3 M4

� �
;

M1 ¼

0 0 0
e15
a

0
1

r
0 0

k2
r

o

oz
k1
r2

o

o/
c12
c11

� 1

� �
1

r
0

� e24
r2

o2

o/2
� k5

o2

oz2
� e24 þ k3

r
o2

o/oz
� e31
c11

o

oz
� 1

r

2
666666666664

3
777777777775

;



962 W.Q. Chen et al. / International Journal of Solids and Structures 41 (2004) 947–964
M2 ¼
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;

where
k1 ¼ c22 � c212=c11; k2 ¼ c23 � c12c13=c11; k3 ¼ e32 � c12e31=c11; k4 ¼ c33 � c213=c11;

k5 ¼ e33 � c13e31=c11; k6 ¼ e33 þ e231=c11; a ¼ c55e11 þ e215:
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